Coastal ecosystems are severely stressed all over the world as a result of overpopulation, intense coastal development, urbanisation, spiralling resource use, pollution, and spread of invasive species. Climate change is expected to exacerbate these stressors and is considered by many to be one of the most important challenges of the 21st century. An urgent need exists to gain a better understanding of the impacts of climate change on coastal areas, how to realign current management practices and how to develop effective adaptation strategies.

The Coastal Ecosystems Programme of UNU-INWEH is hosting a series of seminars given by experts based in southern Ontario on topics relating to coastal environmental science and management in the face of climate change.

26th January
4:00 - 5:00 pm
McMaster Innovation Park
175 Longwood South
Hamilton, ON
FREE PARKING

Coastal wetlands are among the most productive ecosystems in the world, comparable to tropical rain forests and coral reefs. However, 35% of the original wetlands along the Canadian shores of Lakes Erie, Ontario and St. Clair have already been lost, with losses from 73 to 100% between Toronto and Niagara Falls. Most has been due to dredging, draining and conversion to cities and farmland. In 1992, some measure of protection of the remaining wetlands in Ontario was enshrined under the Planning Act, but there are too many caveats. In 2011, we are still losing valuable habitat because of non-native invasive species, urban encroachment and declining water levels associated with global climate change. The topic of this discussion considers the following question: There has been sufficient science to inform policy, but are people sufficiently informed of the policy?

Dr. Pat Chow-Fraser
Professor of Biology and Director of Life Sciences
McMaster University, Hamilton

Dr. Chow-Fraser conducts research on the ecology, conservation and restoration of coastal wetlands and associated streams. Over the past 20 years, she and her students have sampled ~300 wetlands in the Great Lakes basin and have published on the use of models to predict effects of water level, invasive species, and human activities on marsh vegetation and fish habitat in Great Lakes coastal wetlands. Her research efforts have contributed to assisting managers and concerned citizen groups to manage wetland and stream habitats more effectively.